arXivを(Google reader経由で)見ていたら,Leopoldt予想を一般に解決したとするプレプリントを発見した.
著者はCatalan予想を解決したP. Mihailescu. 詳細は後日に譲るとして,とりあえず速報でした.
The and components of - modules and Leopoldt's conjecture. (arXiv:0905.1274v3 [math.NT] UPDATED):
"The conjecture of Leopoldt states that the - adic regulator of a number field does not vanish. It was proved for the abelian case in 1967 by Brumer, using Baker theory. A conjecture, due to Gross and Kuz'min will be shown here to be in a deeper sense a dual of Leopoldt's conjecture with respect to the Iwasawa involution. We prove both conjectures for arbitrary number fields .
The main ingredients of the proof are the Leopoldt reflection, the structure of quasi - cyclic - modules of some of the most important - modules occurring ( acts on them like a constant in ), and the Iwasawa skew symmetric pairing."
0 件のコメント:
コメントを投稿