2009年9月16日水曜日

The T and T components of Λ - modules and Leopoldt's conjecture. (arXiv:0905.1274v3 [math.NT] UPDATED)

arXivを(Google reader経由で)見ていたら,Leopoldt予想を一般に解決したとするプレプリントを発見した.
著者はCatalan予想を解決したP. Mihailescu. 詳細は後日に譲るとして,とりあえず速報でした.

The T and T components of Λ - modules and Leopoldt's conjecture. (arXiv:0905.1274v3 [math.NT] UPDATED):

"The conjecture of Leopoldt states that the p - adic regulator of a number field does not vanish. It was proved for the abelian case in 1967 by Brumer, using Baker theory. A conjecture, due to Gross and Kuz'min will be shown here to be in a deeper sense a dual of Leopoldt's conjecture with respect to the Iwasawa involution. We prove both conjectures for arbitrary number fields \K.
The main ingredients of the proof are the Leopoldt reflection, the structure of quasi - cyclic \Zp[\Gal(\K/\Q)] - modules of some of the most important Λ[\Gal(\K/\Q)] - modules occurring (T acts on them like a constant in \Zp), and the Iwasawa skew symmetric pairing."

0 件のコメント: