2011年4月29日金曜日

木曜日はセミナ:Cohen-Lenstra Heuristics

恒例の,北陸数論セミナへ.今日は自分がしゃべる番で,H. CohenとH. W. Lenstraの,いわゆるCohen-Lenstra Heuristics(以下CLHと略)についての雑談をした.当該論文はこれ(PDF).参加者は他に2人で,ひっそりと.

CLHが紹介されるときには,しばしば,奇素数lを固定して,判別式Dを持つ虚2次体の類数(イデアル類群の位数)h(D)lで割り切れないようなDの密度の評価式として述べられるようだ:



この式がどうもうまく表示されない.念のため別の方法でも書いておく:


これはもちろん誤りではないが,CLHはより根本的な予想を述べたものである.つまり,虚2次体のイデアル類群の奇部分が,「ランダムに分布している」,という主張である.つまり,奇数位数の有限Abel群の同型類全体Aoの上で定義されている関数fに対して,M(f)M0(f)をを次のように定義する:



こちらもうまく表示されないので,別の手段でも書いておこう:

M0(f):=limX[G]Ao(X)f([G])|Aut([G])|[G]Ao(X)1|Aut([G])|,
ただし,正の実数 X に対してAo(X)は奇数位数の有限Abel群で位数がX以下のものの同型類全体,Aut(G)Gの自己同型群,|S|は集合Sの元の個数,である.

このとき,虚2次体のイデアル類群の奇部分のランダムな分布(Cohen-Lenstraの論文で,Fundamental Assumptionとされているもの)とは,次のように定式化される:
M(f)=M0(f).
右辺が,純群論的な量であることに注意されたい.

fとして,考えている群に対する色々な性質の特性関数をとり,右辺を計算することで,イデアル類群の奇部分が同じ性質を満たす虚2次体の「密度」が求まる,という仕組みである.例えば奇素数lを取り,Gの位数がlで割り切れないとき1, そうでないとき0とすると,上に述べたような無限積が現れる.

Cohen-Lenstraの論文の大半が,このような計算をするための枠組みの解説に費やされている.しかも,有限Abel群ではなく,Dedekind整域Aを固定して,有限A加群に対して定式化されている.実際に2次体の密度の話がされるのは,最後の節だけである.

また,2次体だけでなく,より高次の体の族を扱おうという試みも当初からなされているが,より一層speculativeになる.

セミナではまた,関数体の場合の話も少しだけ触れた.

MathJaxを使ってblog記事を書いてみたが,ちょっともどかしい.普段通りにエディタの上でTeXの文書を書き,それをblogの編集画面に貼り付けるのが一番簡単なようである.また,blog記事のpreview画面では,意図したようにTeXでレンダリングされないこともたまにある.難しいものである.補助的に,オンラインで使えるEquation Editorも使用した.

2011年4月13日水曜日

MathJaxを導入してみた

blogに数式を表示する為に,MathJaxを導入してみた(つもり).この投稿はMathJaxのテストなので,内容は特にないし,すぐに消すかもしれない.

MathJaxの導入のために参照したのは,黒木玄さんのこの頁

まずRiemann zeta関数:ζ(s)=n=11ns. 但し(s)>1. ついで,ディスプレイ数式は,ζ(s)=p(11ps)1, 積はすべての素数pに渡り,sについては先と同様に実部が1以上.

おおむねうまくいっているように見える.IE8を使うとレンダリングが非常に遅くなるらしいが,好んでIE8を使う人もいないだろうから,よいことにする.

2011年4月2日土曜日

人間の三つの弱点

「滅多に更新されない」と揶揄されたりもするこのblogだが,年度も変わったことだし,などと理由を付けて閑文字を連ねる.しかし,引用である:

人類が,何であれ大きな事業に着すする機会に直面したときに,私たちの努力をはなはだしく妨げる人間の弱点がいつも三つある.第一に,私たちは共通の目標を設定して,合意に達することがなかなかできない.第二に,十分な資金を調達できない.第三に,惨憺たる失敗を恐れてしまう.(F. ダイソン,「叛逆としての科学―本を語り、文化を読む22章」第18章,p. 265)


未曾有の大災害から三週間が過ぎて,漸く,その先のことを考えなければならないと多くの人が思う一方で,その道のりの困難で遼遠なこともつくずく思われる.

……それに打ち勝つために科学技術の魔力を何も使わなかった.彼らが勝利を収めるのに必要とされたのは,ストレスにさらされた人間が発揮することのできる美徳のすべて,すなわち,強靱さ,勇気,無私の心,洞察力,常識,ユーモアのセンスだった.(同,p. 268)


平安が皆様の上にあるよう祈ります.